
suppression primarily rely upon the Doppler produced from a moving target to separate it from clutter. Actual measurements of a Doppler-producing target of known radar cross section (RCS) are necessary to fully evaluate the clutter rejection of a radar. This paper discusses the development of the 'Quadrahedral' reflector that provides an ideal 'moving target' Doppler-shifted return and includes the results of the moving target indication (MTI) improvement factor measurements performed in June of 1988 on the U.S. Customs SOWRBALL Aerostat Radar. Additional noisy pixels result in background counts in the accumulator. IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989 (A91-37076 15-32). Amsterdam, Elsevier Science Publishers, 1990, p. 602-607. AA(University of Electro-Communications, Chofu, Japan), AB(University of Electro-Communications, Chofu, Japan), AC(University of Electro-Communications, Chofu, Japan), AD(University of Electro-Communications, Chofu, Japan), AE(University of Electro-Communications, Chofu, Japan) IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989 (A91-37076 15-32). Amsterdam, Elsevier Science Publishers, 1990, p. 705-710. Research supported by Technology Research Association of Resources Remote Sensing System. Publication: IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989 (A91-37076 15-32). Amsterdam, Elsevier Science Publishers, 1990, p. 608-613. Publication Date: 00/1990. The principle of signal processing to enhance the azimuthal resolution of a radar by deconvolution between the book and directional echoes of targets on scanning the antenna is presented. Data are acquired along the azimuthal direction on the same range and these data are deconvoluted with the antenna pattern. The azimuth of a target is measured by scanning the antenna and output voltage of the video amplifier is connected to the CRT for PPI display. As the output echoes convolute the target distribution to the antenna pattern, the image shown as PPI on the CRT is spread larger than the real one. Experimental and simulation results of the compression of a radar beam by this technique are presented. IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989 (A91-37076 15-32). Amsterdam, Elsevier Science Publishers, 1990, p. 608-613. A new adaptive Weibull CFAR detector is proposed and applied to a real Weibull-distributed sea clutter. The Weibull statistics of sea clutter are investigated by using a Ku-band radar with a pulsewidth of 100 ns, corresponding to a spatial resolution of 15 m. The values of the shape parameters of the Weibull-distributed sea clutter are summarized, and the capability of the Weibull VFAR detector to suppress the clutter is assessed. IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989 (A91-37076 15-32). Amsterdam, Elsevier Science Publishers, 1990, p. 287-292. Affiliation: AA(Chinese Institute of Electronics, Beijing, People’s Republic of China). Publication: IN: Noise and clutter rejection in radars and imaging sensors; Proceedings of the 2nd International Symposium, Kyoto, Japan, Nov. 14-16, 1989 (A91-37076 15-32).